
Seven trees in one

Mark Hopkins
@antiselfdual

Commonwealth Bank

LambdaJam 2015

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Unlabelled binary trees

data Tree = Leaf | Node Tree Tree

T = 1+ T 2

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Unlabelled binary trees

data Tree = Leaf | Node Tree Tree

T = 1+ T 2

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T = 1+ T 2

Suspend disbelief, and solve forT .

T 2 − T + 1 = 0

T =
−b ±

√
b2 − 4ac
2a

= 1
2 ±

√
3

2 i

= e±πi/3

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T = 1+ T 2

Suspend disbelief, and solve forT .

T 2 − T + 1 = 0

T =
−b ±

√
b2 − 4ac
2a

= 1
2 ±

√
3

2 i

= e±πi/3

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T = 1+ T 2

Suspend disbelief, and solve forT .

T 2 − T + 1 = 0

T =
−b ±

√
b2 − 4ac
2a

= 1
2 ±

√
3

2 i

= e±πi/3

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T = 1+ T 2

Suspend disbelief, and solve forT .

T 2 − T + 1 = 0

T =
−b ±

√
b2 − 4ac
2a

= 1
2 ±

√
3

2 i

= e±πi/3

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T = 1+ T 2

Suspend disbelief, and solve forT .

T 2 − T + 1 = 0

T =
−b ±

√
b2 − 4ac
2a

= 1
2 ±

√
3

2 i

= e±πi/3

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Re

Im

1

−1

i

−i

T

−T

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

So T 6 = 1.

No, obviously wrong.
What about

T 7 = T?

Not obviously wrong . . .
⇒ true!

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

So T 6 = 1. No, obviously wrong.

What about
T 7 = T?

Not obviously wrong . . .
⇒ true!

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

So T 6 = 1. No, obviously wrong.
What about

T 7 = T?

Not obviously wrong . . .
⇒ true!

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

So T 6 = 1. No, obviously wrong.
What about

T 7 = T?

Not obviously wrong . . .

⇒ true!

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

So T 6 = 1. No, obviously wrong.
What about

T 7 = T?

Not obviously wrong . . .
⇒ true!

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Theorem
There exists an O(1) bijective function from T to T 7.

i.e.
I we can pattern match on any 7-tuple of trees and put them

together into one tree.
I we can decompose any tree into the same seven trees it came

from.
Actually holds for any k = 1 mod 6.
Not true for other values.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Theorem
There exists an O(1) bijective function from T to T 7.
i.e.

I we can pattern match on any 7-tuple of trees and put them
together into one tree.

I we can decompose any tree into the same seven trees it came
from.

Actually holds for any k = 1 mod 6.
Not true for other values.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Theorem
There exists an O(1) bijective function from T to T 7.
i.e.

I we can pattern match on any 7-tuple of trees and put them
together into one tree.

I we can decompose any tree into the same seven trees it came
from.

Actually holds for any k = 1 mod 6.
Not true for other values.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Theorem
There exists an O(1) bijective function from T to T 7.
i.e.

I we can pattern match on any 7-tuple of trees and put them
together into one tree.

I we can decompose any tree into the same seven trees it came
from.

Actually holds for any k = 1 mod 6.

Not true for other values.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Theorem
There exists an O(1) bijective function from T to T 7.
i.e.

I we can pattern match on any 7-tuple of trees and put them
together into one tree.

I we can decompose any tree into the same seven trees it came
from.

Actually holds for any k = 1 mod 6.
Not true for other values.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T 2 → T

f :: (Tree , Tree) → Tree
t t1 t2 = Node t1 t2

Not surjective, since we can never reach Leaf.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T 2 → T

f :: (Tree , Tree) → Tree
t t1 t2 = Node t1 t2

Not surjective, since we can never reach Leaf.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T → T 2

f :: Tree → (Tree , Tree)
f t = Node t Leaf

Not surjective either.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T → T 2

f :: Tree → (Tree , Tree)
f t = Node t Leaf

Not surjective either.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T 2 → T , but cleverer

f :: (Tree , Tree) → Tree
f (t1, t2) = go (Node t1 t2)

where
go t = if leftOnly t then left t else t
leftOnly t = t == Leaf

|| right t == Leaf && leftOnly (left t)

Bijective! but not O(1).

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T 2 → T , but cleverer

f :: (Tree , Tree) → Tree
f (t1, t2) = go (Node t1 t2)

where
go t = if leftOnly t then left t else t
leftOnly t = t == Leaf

|| right t == Leaf && leftOnly (left t)

Bijective!

but not O(1).

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

T 2 → T , but cleverer

f :: (Tree , Tree) → Tree
f (t1, t2) = go (Node t1 t2)

where
go t = if leftOnly t then left t else t
leftOnly t = t == Leaf

|| right t == Leaf && leftOnly (left t)

Bijective! but not O(1).

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

A solution

f :: T → (T, T, T, T, T, T, T)

f L = (L,L,L,L,L,L,L)

f (N t1 L) = (t1,N L L,L,L,L,L,L)

f (N t1 (N t2 L)) = (N t1 t2,L,L,L,L,L,L)

f (N t1 (N t2 (N t3 L))) = (t1,N (N t2 t3) L,L,L,L,L,L)

f (N t1 (N t2 (N t3 (N t4 L)))) = (t1,N t2 (N t3 t4),L,L,L,L,L)

f (N t1 (N t2 (N t3 (N t4 (N L L))))) = (t1,t2,N t3 t4,L,L,L,L)

f (N t1 (N t2 (N t3 (N t4 (N (N t5 L) L))))) = (t1,t2,t3,N t4 t5,L,L,L)

f (N t1 (N t2 (N t3 (N t4 (N (N t5 (N t6 L)) L))))) = (t1,t2,t3,t4,N t5 t6,L,L)

f (N t1 (N t2 (N t3 (N t4 (N (N t5 (N t6 (N t7 t8))) L))))) = (t1,t2,t3,t4,t5,t6,N t7 t8)

f (N t1 (N t2 (N t3 (N t4 (N t5 (N t6 t7)))))) = (t1,t2,t3,t4,t5,N t6 t7,L)

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Where did this come from

T = 1+ T 2

T k = T k−1 + T k+1

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Where did this come from

T = 1+ T 2

T k = T k−1 + T k+1

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Penny game

T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

I start with a penny in position 1.
I aim is to move it to position 7 by splitting and combining

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Why did this work?
If we have a type isomorphism T ∼= p(T) then

q1(T) ∼= q2(T) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Why did this work?
If we have a type isomorphism T ∼= p(T) then

q1(T) ∼= q2(T) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Why did this work?
If we have a type isomorphism T ∼= p(T) then

q1(T) ∼= q2(T) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Why did this work?
If we have a type isomorphism T ∼= p(T) then

q1(T) ∼= q2(T) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Why did this work?
If we have a type isomorphism T ∼= p(T) then

q1(T) ∼= q2(T) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Summary

I Simple arithmetic helps us find non-obvious type isomorphisms

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Extensions

I Are there extensions to datatypes of decorated trees?
(multivariate polynomials)

I What applications are there?

I important when writing a compiler to know when two types
are isomomorphic

I It could interesting to split up a tree-shaped stream into seven
parts

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Extensions

I Are there extensions to datatypes of decorated trees?
(multivariate polynomials)

I What applications are there?
I important when writing a compiler to know when two types

are isomomorphic

I It could interesting to split up a tree-shaped stream into seven
parts

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Extensions

I Are there extensions to datatypes of decorated trees?
(multivariate polynomials)

I What applications are there?
I important when writing a compiler to know when two types

are isomomorphic
I It could interesting to split up a tree-shaped stream into seven

parts

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

I Rich theory behind isomorphisms of polynomial types
I brings together a number of fields

I distributive categories
I theory of rigs (semirings)
I combinatorial species
I type theory

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Further reading

I Seven Trees in one, Andreas Blass, Journal of Pure and
Applied Algebra

I On the generic solution to P(X) = X in distributive
categories, Robbie Gates

I Objects of Categories as Complex Numbers, Marcelo Fiore and
Tom Leinster

I An Objective Representation of the Gaussian Integers, Marcelo
Fiore and Tom Leinster

I http://rfcwalters.blogspot.com.au/2010/06/robbie-gates-on-
seven-trees-in-one.html

I http://blog.sigfpe.com/2007/09/arboreal-isomorphisms-from-
nuclear.html

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Challenge

Consider this datatype (Motzkin trees):

data Tree = Zero | One Tree | Two Tree Tree

T = 1+ T + T 2

Show that T 5 ∼= T

I by a nonsense argument using complex numbers

I by composing bijections (the penny game)
I implement the function and its inverse in a language of your

choice

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Challenge

Consider this datatype (Motzkin trees):

data Tree = Zero | One Tree | Two Tree Tree

T = 1+ T + T 2

Show that T 5 ∼= T

I by a nonsense argument using complex numbers
I by composing bijections (the penny game)

I implement the function and its inverse in a language of your
choice

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Challenge

Consider this datatype (Motzkin trees):

data Tree = Zero | One Tree | Two Tree Tree

T = 1+ T + T 2

Show that T 5 ∼= T

I by a nonsense argument using complex numbers
I by composing bijections (the penny game)
I implement the function and its inverse in a language of your

choice

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

Photo credits

I The Druid’s Grove, Norbury Park: Ancient Yew Trees by
Thomas Allom 1804-1872
http://www.victorianweb.org/art/illustration/allom/1.html

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

End

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	0.178:
	0.179:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

