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Unlabelled binary trees

data Tree = Leaf | Node Tree Tree

T = 1+ T 2
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T = 1+ T 2

Suspend disbelief, and solve forT .

T 2 − T + 1 = 0

T =
−b ±

√
b2 − 4ac
2a

= 1
2 ±

√
3

2 i

= e±πi/3
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Re

Im

1

−1

i

−i

T
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So T 6 = 1.

No, obviously wrong.
What about

T 7 = T?

Not obviously wrong . . .
⇒ true!
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Theorem
There exists an O(1) bijective function from T to T 7.

i.e.
I we can pattern match on any 7-tuple of trees and put them

together into one tree.
I we can decompose any tree into the same seven trees it came

from.
Actually holds for any k = 1 mod 6.
Not true for other values.
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T 2 → T

f :: (Tree , Tree) → Tree
t t1 t2 = Node t1 t2

Not surjective, since we can never reach Leaf.
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T → T 2

f :: Tree → (Tree , Tree)
f t = Node t Leaf

Not surjective either.
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T → T 2

f :: Tree → (Tree , Tree)
f t = Node t Leaf

Not surjective either.
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T 2 → T , but cleverer

f :: (Tree , Tree) → Tree
f (t1, t2) = go (Node t1 t2)

where
go t = if leftOnly t then left t else t
leftOnly t = t == Leaf

|| right t == Leaf && leftOnly (left t)

Bijective! but not O(1).
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A solution

f :: T → (T, T, T, T, T, T, T)

f L = (L,L,L,L,L,L,L)

f (N t1 L) = (t1,N L L,L,L,L,L,L)

f (N t1 (N t2 L)) = (N t1 t2,L,L,L,L,L,L)

f (N t1 (N t2 (N t3 L))) = (t1,N (N t2 t3) L,L,L,L,L,L)

f (N t1 (N t2 (N t3 (N t4 L)))) = (t1,N t2 (N t3 t4),L,L,L,L,L)

f (N t1 (N t2 (N t3 (N t4 (N L L))))) = (t1,t2,N t3 t4,L,L,L,L)

f (N t1 (N t2 (N t3 (N t4 (N (N t5 L) L))))) = (t1,t2,t3,N t4 t5,L,L,L)

f (N t1 (N t2 (N t3 (N t4 (N (N t5 (N t6 L)) L))))) = (t1,t2,t3,t4,N t5 t6,L,L)

f (N t1 (N t2 (N t3 (N t4 (N (N t5 (N t6 (N t7 t8))) L))))) = (t1,t2,t3,t4,t5,t6,N t7 t8)

f (N t1 (N t2 (N t3 (N t4 (N t5 (N t6 t7 )))))) = (t1,t2,t3,t4,t5,N t6 t7,L)
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Where did this come from

T = 1+ T 2

T k = T k−1 + T k+1
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Penny game

T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

I start with a penny in position 1.
I aim is to move it to position 7 by splitting and combining
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Why did this work?
If we have a type isomorphism T ∼= p(T ) then

q1(T ) ∼= q2(T ) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x ]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x ]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Why did this work?
If we have a type isomorphism T ∼= p(T ) then

q1(T ) ∼= q2(T ) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x ]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x ]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Why did this work?
If we have a type isomorphism T ∼= p(T ) then

q1(T ) ∼= q2(T ) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x ]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x ]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Why did this work?
If we have a type isomorphism T ∼= p(T ) then

q1(T ) ∼= q2(T ) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x ]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x ]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Why did this work?
If we have a type isomorphism T ∼= p(T ) then

q1(T ) ∼= q2(T ) as types

⇐⇒ q1(x) ∼= q2(x) in the rig N[x ]/(p(x) = x)

⇒ q1(x) ∼= q2(x) in the ring Z[x ]/(p(x) = x)

⇒ q1(z) ∼= q2(z) for all z ∈ C such that p(z) = z .

And, under some conditions, the reverse implications hold.

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Summary

I Simple arithmetic helps us find non-obvious type isomorphisms
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Extensions

I Are there extensions to datatypes of decorated trees?
(multivariate polynomials)

I What applications are there?

I important when writing a compiler to know when two types
are isomomorphic

I It could interesting to split up a tree-shaped stream into seven
parts
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I Rich theory behind isomorphisms of polynomial types
I brings together a number of fields

I distributive categories
I theory of rigs (semirings)
I combinatorial species
I type theory
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Further reading

I Seven Trees in one, Andreas Blass, Journal of Pure and
Applied Algebra

I On the generic solution to P(X ) = X in distributive
categories, Robbie Gates

I Objects of Categories as Complex Numbers, Marcelo Fiore and
Tom Leinster

I An Objective Representation of the Gaussian Integers, Marcelo
Fiore and Tom Leinster

I http://rfcwalters.blogspot.com.au/2010/06/robbie-gates-on-
seven-trees-in-one.html

I http://blog.sigfpe.com/2007/09/arboreal-isomorphisms-from-
nuclear.html
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Challenge

Consider this datatype (Motzkin trees):

data Tree = Zero | One Tree | Two Tree Tree

T = 1+ T + T 2

Show that T 5 ∼= T

I by a nonsense argument using complex numbers

I by composing bijections (the penny game)
I implement the function and its inverse in a language of your

choice

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Challenge

Consider this datatype (Motzkin trees):

data Tree = Zero | One Tree | Two Tree Tree

T = 1+ T + T 2

Show that T 5 ∼= T

I by a nonsense argument using complex numbers
I by composing bijections (the penny game)

I implement the function and its inverse in a language of your
choice

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Challenge

Consider this datatype (Motzkin trees):

data Tree = Zero | One Tree | Two Tree Tree

T = 1+ T + T 2

Show that T 5 ∼= T

I by a nonsense argument using complex numbers
I by composing bijections (the penny game)
I implement the function and its inverse in a language of your

choice

Mark Hopkins @antiselfdual Commonwealth Bank Seven trees in one



Photo credits

I The Druid’s Grove, Norbury Park: Ancient Yew Trees by
Thomas Allom 1804-1872
http://www.victorianweb.org/art/illustration/allom/1.html
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End
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